
Accessing SCSI and ATA
Devices in Mac OS X

Session 111

Accessing SCSI and ATA
Devices in Mac OS X

Tim McLeod
Technical Lead

Mass Storage Software

Introduction
•SCSI and ATA devices in Mac OS X already

provide many services that can be used
by applications

•New services will be added to the next release
Jaguar, including:

• Scanner support via ImageCapture
• Printing Support via CUPS
• DiscRecording framework

So, what are these services,
how do they differ and which

one should I use?

What You Will Learn
•What SCSI and ATA devices are
•How these devices are represented in Mac OS X
•The services that are provided by these devices
•How to access these services from applications

What Is a SCSI Device
•Complies with one of the SCSI command

specifications from the T10 committee
•Can be attached by any one of the supported

physical interconnects such as FireWire,
ATA(ATAPI), USB or SCSI Parallel

 http://www.t10.org

•In Mac OS X, the name SCSI Parallel will be
used to refer to the traditional parallel SCSI bus
and devices

What Is an ATA Device
•Complies with an ATA specification as defined

by the T13 committee
•Such as:

• ATA hard drives
• PCMCIA/ATA storage devices

 http://www.t13.org

Services Provided by
SCSI and ATA Devices

•Storage services
•Application-specific services
•Or both

Assumptions and Limitations
•All devices are detachable from the system
•Only a single entity can control a device at

any given time

General Storage Services Model

Controller LayerController Layer

General Storage Services Model

Controller LayerController Layer

Transport LayerTransport Layer

General Storage Services Model

Controller LayerController Layer

Transport LayerTransport Layer

Device Services LayerDevice Services Layer

General Storage Services Model

Controller LayerController Layer

Transport LayerTransport Layer

Device Services LayerDevice Services Layer

Media Access LayerMedia Access Layer

BSD Media

Shims

BSD Media

Shims
VolumesVolumes

ATA Storage Services Model

Controller LayerController Layer

Transport LayerTransport Layer

Device Services LayerDevice Services Layer

Media Access LayerMedia Access Layer

BSD Media
Shims

BSD Media
Shims

VolumesVolumes

IOMedia (Whole)IOMedia (Whole)

IOBlockStorageDriverIOBlockStorageDriver

IOATABlockStorageDeviceIOATABlockStorageDevice

IOATABlockStorageDriverIOATABlockStorageDriver

IOATADeviceIOATADevice

IOATAControllerIOATAController

Controller LayerController Layer

Transport LayerTransport Layer

Device Services LayerDevice Services Layer

Media Access LayerMedia Access Layer

BSD Media
Shims

BSD Media
Shims

VolumesVolumes

SCSI Storage Services Model

IOMediaIOMedia

IODVDBlockStorageDriverIODVDBlockStorageDriver

IODVDServicesIODVDServices

IOSCSIPeripheralDeviceType05IOSCSIPeripheralDeviceType05

IOSCSIPeripheralDeviceNubIOSCSIPeripheralDeviceNub

IOATAPIProtocolTransportIOATAPIProtocolTransport

IOATAControllerIOATAController

SCSI Application-Specific Model

Controller LayerController Layer

Transport LayerTransport Layer

Device Services LayerDevice Services Layer

Client ApplicationClient Application

SCSITaskUserClientSCSITaskUserClient

IOSCSIPeripheralDeviceNubIOSCSIPeripheralDeviceNub

IOFireWireSerialBusProtocolTransportIOFireWireSerialBusProtocolTransport

IOFireWireSBP2IOFireWireSBP2

IOFireWireFamilyIOFireWireFamily

Methods of Access
•An application can access the provided

services via:
• Media Access Layer, BSD Media Shims,

and IOMedia filters
• User Clients, both provided and custom
• The IORegistry
• Migration from obsoleted methods such as

IOSCSILib, IOCDBLib, and SCSIAction

Methods of Access:
 Media Access Layer

Craig Marciniak
Senior Software Engineer

Mass Storage Software

What You Will Learn
•Understanding IOMedia Objects
•Using the BSD Client Interface
•Using the BSD APIs from Carbon and Cocoa
•Understanding IOMedia Filters
•Writing an IOMedia Filter

Media Access Layer

Controller LayerController Layer

Transport LayerTransport Layer

Device Services LayerDevice Services Layer

Media Access LayerMedia Access Layer

BSD Media

Shims

BSD Media

Shims
VolumesVolumes

IOMedia Objects
•Object representations of contiguous

logical storage
•Abstracted from hardware details
•Byte-based APIs with 64-bit parameters

The BSD Media Shim
•dev nodes are file representations of devices

that are stored in /dev
•BSD device interfaces provide user-client access

for IOMedia objects
•Example device nodes:

/dev/disk0, /dev/rdisk0, etc.
•Simple five entry point API

(open, close, read, write, and ioctl)

BSD Device Interfaces
•There are two device interfaces

• Raw (sometimes referred to as unbuffered
or character)

• Block (sometimes referred to as cooked)
which are buffered and/or processed

Raw Device Interface
•Media is accessed via /dev/rdisk* device nodes
•Access must be a multiple of the natural block

size or it will be rejected with an error
•Low-level disk utilities should use this interface
•Example: a database might want to use

this interface to manage their own tuned
caching scheme

Block Device Interface
•Media is accessed via /dev/disk device nodes
•Access does not have to be a multiple of the

natural block size since it is buffered
•File systems generally use this interface

Using the Interfaces
•Uses POSIX.1 style I/O functions
•Mode follows established UNIX semantics
•You need a BSD path to the desired node

Getting BSD Paths From Cocoa
•Cocoa’s NSFileManager and NSWorkspace

use mount points
•Mount points can be translated to BSD paths

via getmntinfo() or statfs

Example
char bsdPath [MAXPATHLEN] = { 0 };

int index, mInfoCount;

struct statfs * mInfo;

mInfoCount = getmntinfo (&mInfo, 0);

for (index = 0 ; index < mInfoCount ; index++) {

if mntonname equals mountPoint

copy mntfromname to bsdPath

}

Simplified Example
char bsdPath [MAXPATHLEN] = { 0 };

struct statfs * mInfo;

if (statfs (mountPoint, & mInfo) == 0) {

copy mntfromname to bsdPath

}

Getting BSD Paths From Carbon
•Carbon uses Volume Reference Numbers

• FSSpec, FSRef, or use FSGetVolumeInfo
• Carbon provides a method to convert a

vRefNum to a C-string which represents
the BSD path

Example
Char bsdPath[MAXPATHLEN] = { 0 };

HParamBlockRec pb;

GetVolParmsInfoBuffer volParmsInfo;

Initialize parameter blocks

pb.ioParam.ioVRefNum = vRefNum;

pb.ioParam.ioBuffer = (Ptr) &volParmsInfo;

pb.ioParam.ioReqCount = sizeof (volParmsInfo);

if (PBHGetVolParmsSync (&pb) == noErr) {

strcpy (bsdPath, volParmsInfo.vMDeviceID);

}

open ()
char bsdPath [MAXPATHLEN] = { 0 };

int fd;

fd = open (bsdPath , O_RDONLY);

// if fd is equal to -1 see errno for error

• See man pages, The Design and Implementation of the BSD
4.4 Operating System, and/or Steven’s Advanced
Programming in the UNIX environment

read () and write ()
•Reads and writes from and to raw device nodes

must be a multiple of natural block size

bytesRead = read (fs, &buffer, readCount);

// if bytesRead = -1 check errno for details

bytesWritten = write (fs, &buffer, writeCount);

 // if bytesRead = -1 check errno for details

ioctl
•Pronounced IOCTL (sometimes IO Controls)
•<IOKit/storage/IOMediaBSDClient.h>

• <IOKit/storage/IOCDMediaBSDClient.h>
• <IOKit/storage/IODVDMediaBSDClient.h>

•Examples:
DKIOCEJECT, DKIOCGETBLOCKSIZE, etc.

New ioctls in Jaguar
•IOMediaBSDClient.h

• DKIOCSYNCHRONIZECACHE Flush write cache
•IOCDMediaBSDClient.h

• DKIOCCDREADTOC Read TOC
• DKIOCCDREADDISCINFO Read disc info
• DKIOCCDREADTRACKINFO Read track info

•IODVDMediaBSDClient.h
• DKIOCDVDREADDISCINFO Read disc info
• DKIOCDVDREADRZONEINFO Read RZone info

NEWNEW

Example ioctl
char * bsdPath = "/dev/rdisk0s9";

u_int32_t bs = 0;

int fd;

if ((fd = open (bsdPath, O_RDONLY, 0)) != -1)

{

if (ioctl (fd, DKIOCGETBLOCKSIZE, &bs) != -1)

printf ("blockSize = %d\n", bs);

close (fd);

}

Media Filters
•Block oriented parsing

(e.g., compression, encryption, etc.)
•Abstracted from hardware details
•Byte-based API with 64-bit parameters
• See the Inside Mac OS X: Writing Drivers

for Mass Storage Devices

Simple Media Filter

MediaMedia

FilterFilter

MediaMedia

MediaMedia

PartitionPartition

MediaMediaMediaMedia

MediaMedia

Media Partitioning Schemes
•Are nothing more than filters themselves

Complex Filters
•Arbitrary Complexity
•Software RAID

MediaMedia

RAIDRAID

MediaMediaMediaMedia

MediaMediaMediaMedia MediaMedia

Demo
Dan Preston

Mass Storage Demo Boy

Methods of Access:
 User Clients

Chris Sarcone
Software Engineer

Mass Storage

What Is a User Client
•An intermediary between a kernel object

and a user space client
•Exports control to user space code via:

• Device Interface
• IOCFPlugIn defines the interface
• Act as proxies for kernel objects

• IOCTL
• Other methods

Apple-Supplied User Clients
•Media layer

• IOMediaBSDClient
• IOCDMediaBSDClient
• IODVDMediaBSDClient

•Device layer
• ATASMARTUserClient
• SCSITaskUserClient

IOATAControllerIOATAController

IOATADeviceIOATADevice

IOATABlockStorageDeviceIOATABlockStorageDevice

IOATABlockStorageDriverIOATABlockStorageDriver

ClientClient

ATASMART

UserClient

ATASMART

UserClient

IOATABlockStorageDriverIOATABlockStorageDriver

IOMediaIOMedia

<IOKit/storage/ata/ATASMARTLib.h>

User Client for ATA Devices
•Only for S.M.A.R.T.
•Device Interface

• ATASMARTInterface

•Documentation
forthcoming—For
now, consult header
doc in

User Client for SCSI Devices
•Device Interfaces

• SCSITaskDeviceInterface
• MMCDeviceInterface

•Supplemental Interfaces
• SCSITaskInterface

•Documented in Inside Mac OS X: Accessing
Hardware From Applications

•SDK available
(http://developer.apple.com/hardware)

User Client for SCSI Devices
•SCSITaskDeviceInterface

• Peripheral device types not supported
by Apple with in-kernel drivers

• Tape drives
• Scanners
• Printers

• Exclusive access model with full control
of the device

• SCSI Task Management Functions NEWNEW

User Client for SCSI Devices

IOFireWireFamilyIOFireWireFamily

IOFireWireSBP2IOFireWireSBP2

IOSCSIPeripheralDeviceNubIOSCSIPeripheralDeviceNub

IOFireWireSerialBusProtocolTransportIOFireWireSerialBusProtocolTransport

Application AddressSpace

Kernel Address Space

Logical Unit Driver

Client ApplicationClient Application

SCSITaskUserClientSCSITaskUserClient

User Client for SCSI Devices
•MMCDeviceInterface

• Provided for all MMC-2 compliant drives
capable of authoring

• GetConfiguration profiles
• Mechanical Capabilities mode page

• Can be used in conjunction with
SCSITaskDeviceInterface to gain exclusive
access to authoring devices

• Migrating some existing functionality to
IOCTLs where appropriate

IOATAPIProtocolTransportIOATAPIProtocolTransport

IODVDServicesIODVDServices

IOSCSIPeripheralDeviceNubIOSCSIPeripheralDeviceNub

IODVDBlockStorageDriverIODVDBlockStorageDriver

User Client for SCSI Devices

Application Address Space

Kernel Address Space

Logical Unit Driver

Client ApplicationClient Application

SCSITaskUserClientSCSITaskUserClient

IOSCSIPeripheralDeviceType05IOSCSIPeripheralDeviceType05

Obtaining Exclusive
Access to a SCSI Device

•Use new Carbon APIs in Files.h to
unmount volume

• FSCreate/DisposeVolumeOperation
• FSUnmountVolumeSync/Async

•Use Digital Hub for notifications of blank media
insertion (‘dhub’ AppleEvent)

Obtaining Exclusive
Access to a SCSI Device

•Use the SCSITaskDeviceInterface to query
whether exclusive access is available

•Obtain exclusive access
•Once you have obtained exclusive access,

your application is the Logical Unit Driver

Demo
Dan Preston

Mass Storage Demo Boy

Custom User Clients
•Is a user client really necessary?

• How much data? How often?
• Are there other ways which satisfy my needs?

•Consider other options
• IORegistry properties

• Finding static properties
• Dynamically setting properties

• Asynchronous notifications from the driver
to interested parties

http://developer.apple.com/samplecode/Sample_Code

/Devices_and_Hardware/IOKit/SimpleUserClient.htm

Custom User Clients
•Create a subclass of IOUserClient
•Define your API
•Implement the functions in the kernel
•Test with a command line tool or app

Methods of Access:
 IORegistry

Using the IORegistry Functions
// Get services which match our class

IOServiceGetMatchingServices (

masterPort,

IOServiceMatching (“MyClassName”),

&iterator);

// Loop using iterator to get service objects

{

// Call IORegistryEntryCreateCFProperties()

// Inspect properties

// Release properties dictionary

// Release object (iterator bumped its refcount)

}

Using the IORegistry Functions
// Get services which match our class

IOServiceGetMatchingServices (

masterPort,

IOServiceMatching (“MyClassName”),

&iterator);

// Loop using iterator to get service objects

{

// Fill in dictionary using CoreFoundation routines

// Call IORegistryEntrySetCFProperties()

// Release object since iterator bumped its refcount

}

Overriding setProperties()
IOReturn

MyClassName::setProperties (OSObject * properties)

{

OSDictionary * dict = NULL;

// Check if the property is of correct type

dict = OSDynamicCast (OSDictionary, properties);

if (dict != NULL)

{

// Check for properties the driver understands

}

return kIOReturnSuccess;

}

Methods of Access:
 Migration From

Obsoleted Methods

Reasons to Migrate
•SCSIAction

• Only IOKit should contain hardware APIs
• Carbon will formally deprecate this API in Jaguar
• Carbon will remove this API post-Jaguar

• Performance is not great
•IOSCSILib/IOCDBLib

• Will only work with IOSCSIFamily-based drivers
• SCSITaskUserClient has equivalent or better

functionality

Alternatives for Those
Using Obsoleted Methods

•Image Capture Architecture-based drivers should
be written for scanners in order to promote
system-wide use for applications

•CUPS architecture-based drivers should be
written for printers in order to promote system-
wide use for applications

Roadmap
Hall 2

Thurs., 2:00pm
Hall 2

Thurs., 2:00pm

008 DiscRecording APIs:
Write CDs and DVDs from
your applications

Hall 2
Thurs., 10:30am

Hall 2
Thurs., 10:30am

510 Printing and Mac OS X:
Access printers from your applications

Room C
Fri., 2:00pm

Room C
Fri., 2:00pm

515 Image Capture Framework:
Imaging device support for applications

For More Information
•SCSI Specifications http://www.t10.org

•ATA Specifications http://www.t13.org

•Mass Storage Discussion List
• To subscribe send an e-mail to
 requests@sam.apple.com

• With message subscribe x_mass_storage

Accessing SCSI and ATA Devices

Documentation > Darwin > I/O Kit Documentation

Softcopy: http://developer.apple.com/techpubs/macosx/Darwin/IOKit/iokit.html

Hardcopy: http://www.vervante.com/apple

Documentation

•Accessing Hardware
From Applications

• Working With
SCSI Architecture
Model Devices

Documentation > Darwin > I/O Kit Documentation

Softcopy: http://developer.apple.com/techpubs/macosx/Darwin/IOKit/iokit.html

Hardcopy: http://www.vervante.com/apple

Documentation

•Writing Drivers for
Mass Storage Devices

Accessing SCSI and ATA Devices

Who to Contact
Mark Tozer
Hardware Evangelist
tozer@apple.com

http://developer.apple.com/wwdc2002/urls.html

Q&A

Mark Tozer
Hardware Evangelist

tozer@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

